
.h.'

ETL-0541 F .

Parallel Vision Algorithm
Design and Implementation

o 1988 End of Year Report
DTIC

N 0 r LECTE Fl
N Takeo Kanade SEP 18 1989

Jon Adrian Webb U
0 Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, Pennsylvania 15213

August 1989

Approved for public release; distribution is unlimited.

Prepared for:

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

U.S. Army Corps of Engineers
Engineer Topographic Laboratories
Fort Belvoir, Virginia 22060-5546

89 9 15 010

Parallel Vision Algorithm Design and Implementation

1988 End of Year Report

Takeo Kanade and Jon Adrian Webb

CMU-RI-TR-89-23

The Robotics Institute
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

August 1989

© 1989 Carnegie Mellon University

This research was supported by the Defense Advanced Research Projects Agency (DOD), monitored by the US
Army Engineer Topograhic Laboratories under Contract DACA76-85-C-0002.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

Form ApprovedREPORT DOCUMENTATION PAGE OMBNo. 0704-0188
I. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Fa. REO UNCLASSIFIED l

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATIONIOOWNGRADING SCHEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

M4U-RI-TR-89-23 ETL-0541

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

Carnegie Mellon University U.S. Army Engineer Topographic Laboratories

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

5000 Forbes Avenue Fort Belvoir, VA 22060-5546
Pittsburgh, PA 15213

&a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION Defense Advanced (If applicable)

Research Projects Agency DACA76-85-C-0002

B. ADORESS(C/ty, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

1400 Wilson Boulevard ELEMENT NO. NO. NO. ACCESSION NO.
Arlington, VA 22209-2308

11. TITLE (Include Security OCasification)

Parallel Vision Algorithm Design and Implementation 1988 End of Year Report

12. PERSONAL AUTHOR(S)

Takeo Kanade & Jon Adrian Webb
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Annual FROMI/15/88 TO1/1/89 August 1989 33

16. SUPPLEMENTARY NOTA71ON Previous reports in series:

ETL-0467 May 1987 (for 1/86 to 1/87) End of Year Report for Parallel Vision Algor. Des.& Imp

ETL-0513 Aug 1988 (for 1/87 to 1/88) Paral. Vis. Algor. Des. & Impl. 1987 End of Year Report

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block numbedr)
FIELD GROUP SUB-GROUP tomputer Vision, Systolic Processors, Benchmarks, Warp,

Programming Languages, Parallel Cowputers, Image Proccszing,

1 ABSTRACT (Continue on reverse if necessary and identify by block number)
The Apply programming language has been extended to allow variable-sized image computations,

and also to allow border mirroring, in which pixels accessed, outside the borders are produced

by copying pixels from the interior of the image. Implementationand design decisions are
discussed. Apply and the Warp programming language W2 were used to implement the second DARPA

image understanding benchmark. The results of this implementation are reported. Experience
with this benchmark suggests a method for performing global image computations in a machine
independent manner, using the divide and conquer model. Implications of this model for algor-
ithms in the image understanding benchmark are discussed. It is shown that this model is capabl
of computing any algorithm in which data is accessed in a fixed order, regardless of the' data
values, and in which the final computation is reversible: that is, it produces the same results
if the data values are reversed in order. IK . r I_2. ' - L ,

20. DISTRIBUTION /AVAILABIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
a] UNC .ASSIFIED/UNLIMITED 0 SAME AS RPT. 0: OTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
202 355-2700 CEETL-RI-T

DOForm 1473, JUN 84 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASS I h LED

Table of Contents

1. Introduction 1
2. Apply Enhancements 2

2.1 Variable-Sized Image Processing 2
2.1.1 Background 2
2.1.2 Design Tradeoffs 4

2.2 Mirrored Borders 5
3. The Second DARPA Image Understanding Benchmark on Warp 7

3.1 Benchmark Description 7
3.2 Connected Component Labelling 9
3.3 Tracing and Computing K-Curvature 10
3.4 Median Filter 10

3.4.1 3x3 Median Filter 10
3.4.2 5x5 Median Filter 11

3.5 Gradient Magnitude and Thresholding 12
3.6 Depth and Hough Probes 12

3.6.1 Depth Probe 12
3.6.2 Hough Probe 13

3.7 Paint Result 14
3.8 Exploiting Task-level Parallelism 14
3.9 Performance Summary 16

4. Computing Global Image Operations 18
4.1 Benchmark Global Image Processing Operations in Apply 21

4.1.1 Median Filter 21
4.1.2 Paint Rectangle 22
4.1.3 Depth Probe 22
4.1.4 Hough Probe 22
4.1.5 Connected Components 23

4.2 Theoretical Restrictions of the Extended Apply 25
5. Conclusions 27

Acctesio'i For

NTIS CRAM&I

DTIC TAB El
Unannou'ced 0l

Distv ib.t'on I

Availibility Codes

Avail andtor
Dist Special

A-1I

List of Figures

Figure 2-1: (A) Image; (B) Image with mirrored borders; (C) Image with replicated 5
borders

Figure 3-1: A Simple Mobile 8
Figure 3-2: Apply Code for Computing Direction Numbers 10
Figure 3-3: C Code for Computing Direction Numbers 11
Figure 3-4: Apply Sobel Operator 12
Figure 3-5: The inner loop of the W2 Hough program 13
Figure 3-6: Task-level parallelism in the IU Benchmark 15
Figure 4-1: Merging results from adjacent image regions serially 20
Figure 4-2: Merging results from adjacent image regions in parallel 20
Figure 4-3: Graph of applications of RO to compute R*AIIB 26

iii

List of Tables

Table 3-1: Performance of Warp on the IU Benchmark 17
Table 4-1: Global operations with different communications methods 21

iv

1. Introduction

This report reviews progress at Carnegie Mellon University (CMU) from January 15, 1988 to January 14, 1989 on
research supported by the Defense Advanced Research Project Agency (DOD), monitored by the U.S. Army
Engineer Topographic Laboratories under Contract DACA76-85-C-0002, titled "Parallel Algorithms for Computer
Vision Task B-Parallel Algorithm Design and Implementation." The report consists of an introduction, three
detailed reports on specific areas of research, and a conclusion..

The three reports discuss the following areas of research:

" The Apply language, one of the major results of the parallel vision project at Carnegie Mellon, has been
used by several DOD-sponsored sites in programming the Warp computer. Some of these sites
requested several enhancements to the Apply language, including some enhancements that significantly
extended its functionality for general use. These enhancements, specifically the ability to process
varying-sized images with a single Apply program and the ability to mirror image borders, were done at
Carnegie Mellon. We discuss here the enhancements and the design strategy behind them.

" Carnegie Mellon was a participant in the second DARPA Image Understanding Benchmark study,
which compared the performance of a variety of architectures on a complete, integrated, image
processing task. The performance and implementation of the benchmark on the Warp machine are
presented. Both tighdy-coupled data parallelism and loosely-coupled task-parallelism were exploited in
order to get the best overall execution time or, the task. We report the benchmark results and
implementation methods and design choices here.

" Using the experience on this task and our previous experience from parallel vision, programming issues
for low- and mid-level vision on parallel computers are examined. In particular, the problem of
extending the Apply language (a machine-independent language for low-level computer vision) is
considered. Extensions to Apply are proposed and it is shown how these extensions allow the efficient
implementation of all of the low- and mid-level vision operations in the benchmark. The class of local
and global operations that can be programmed with the extended Apply is considered. It is shown that
all local and global operations that are reversible-which produce the same results when applied from
the top down, or from the bottom up-can be programmed in the extended Apply.

2. Apply Enhancements

Two enhancements were made to Apply in 1988. The more significant of these was variable-sized image
processing. The second was mirrored borders. The implementation of each of these will be discussed.

2.1 Variable-Sized Image Processing

Originally Apply and all Warp programs could process images and other data structures of a size specified at
compile time. This design was chosen as a result of two observations: first, several hardware limitations of the
Warp machine made it difficult to generate efficient code when the loop size in iterations was not known at compile
time; second, in image processing images being processed usually come directly from a frame buffer, which
produces images in only a few different sizes. Thus it is practical and efficient to restrict the image sizes.

However, as time went by, it became clear that there were good reasons to allow the image size to be specified at
runtime. In processing large reconnaissance images in the ADRIES and SCORPIUS programs, the usual mode of
processing was to restrict analysis to a limited area of the image, then take a region of the image from that area and
process it further. The region of the image being processed could vary significantly in size. It was therefore
requested that Apply be modified so that the image size could be specified at runtime. Similar considerations came
from the NAVLAB project and other research projects at Carnegie Mellon. Clearly, making Apply capable of
processing variable-sized images would be very useful.

In the summer of 1988, Han Wang, a graduate student visiting from the University of Leeds, modified Apply to
allow it to process images whose size was specified at run time. This was an extensive modification that involved a
number of design tradeoffs. We will present the background for this modification, the design tradeoffs encountered
while doing it, and the implementation chosen.

2.1.1 Background

Several restrictions in the Warp architecture make it easier to implement fixed-size image processing, where the
image size is known at compile time. These restrictions arose from a combination of trying to keep the design
simple, and trying to take advantage of the restricted image sizes commonly used in image processing.

The Warp architecture restrictions that led to fixed-size image processing are:
" Warp's deep pipeline. Counting the time through the floating point adder or multiplier and the register

file, an arithmetic operation takes seven cycles on Warp. These cycles must be software pipelined for
best performance. In the first implementation of software pipelining, only loops with bounds known at
compile time were implemented.

* Warp's distributed control. Three independent units must cooperate to control a Warp program: the
external host processors, the interface unit, and the Warp cells themselves. Each of these must either be
controlled by its own looping constructs or must get its control information from another of the units.
Obviously, such control is easier to achieve if all loop bounds are known beforehand.

" Data conversion restrictions. A byte image is converted to floating point in the interface unit before
being passed to Warp. Because of hardware restrictions this conversion must occur four bytes at a time.
If the image width is not divisible by four, special precautions must be taken to pad it out and discard
the extra data inside Warp.

* Control restrictions in Warp's interface unit. Originally, the interface unit did not include any
provision for transferring data between the data and control paths. Thus, it was impossible to
implement a run-time dependent loop on it.

These restrictions were removed as later versions of the Warp machine were developed. A control path from the
external host to the interface unit was added so that the interface unit could loop under control of the external host,
making it possible to implement a run-time dependent loop. The first two restrictions were software restrictions that
were removed as the W2 compiler achieved a greater level of maturity. The data conversion restriction was handled

2

in the devclopmcnt of the variable image size Apply.

We took advantage of fixed size image processing to improve performance of Warp programs. A special
input/output (I/O) model was implemented that would actually overlap communication with processing inside the
Warp array.

This model evolved from an earlier design that did not overlap communication with processing. Early on, it was
realized that processing data one row at a time, distributing that row across the Warp cells, had several advantages:
(1) the image could be read in raster-order, making for faster access and easier programming; (2) it was easy to give
each cell a contiguous group of columns, so that each processed a local region, for greater efficiency and
programming ease; (3) local operators could be computed with little memory cost; and (4) it was easy for the cells to
share columns at the border of their regions, which they would have to for local operators with extent.

This model was implemented with two macros, GETROW and PUTROW. GETROW read a row of data from
the image and distributed it across the cells; PUTROW collected outputs from each cell and assembled them into
one row, which was sent to the external host. These macros were easy enough to use that a W2 programmer, with
care, could write image processing programs. They are still in use today.

These macros did not truly take advantage of Warp's systolic I/O facilities, however. Warp's independent
functional units make it possible to, in one cycle, perform a floating point add and multiply, read both the X and Y
queues, write both queues and perform a read and a write to memory. While accessing a message with GETROW or
PUTROW, only queue and memory access occur. Systolic I/O is being abandoned in favor of message passing I/O,
in the name of programmer ease.

While these macros worked well for compute intensive benchmarks, Warp's performance on I/O intensive
benchmarks was inferior even to simple videorate processors. We therefore implemented a new macro that
combined GETROW and PUTROW. It was called COMPUTEROW. It ran in three phases. In the first phase it
would read in the data belonging to this cell, and store it in a memory buffer, it would also consume a portion of the
output buffer representing the output this cell would produce. In the second phase, it would repeatedly compute one
output and pass through several inputs and outputs to the following cells. In the third phase, it would send the
output from this cell to later cells, and fill in the portion of the input buffer removed by its consumption of data in
the first phase. The input and output buffers had to remain the same size so that each cell's code could be identical.
The output buffer started out as all zero; these zeroes were generated by the interface unit on one pathway as it fed
in the input data on the other.

A technical restriction in the W2 compiler made it necessary for the COMPUTEROW macro to generate multiple
send and receive statements (instead of putting them inside a loop) in the second phase, while passing through inputs
and outputs. The W2 compiler did not attempt to merge together into one microinstruction operations from different
basic blocks. If the send and receive statements were in a loop, they would be in a separate basic block, and could
not be merged together with the computation into one microinstruction. Since the send and receive statements were
generated by the Apply compiler their number had to be known at compile time. Thus, the COMPUTEROW
method could only be used when the image size was known then.

This macro took nearly full advantage of Warp's systolic I/O given the desire to process the image in raster order.
In its central phase, it fully overlapped input, computation and output. The macro was somewhat difficult for the
W2 programmer to use. But it led to respectable performance for Warp on many benchmarks.

In the implementation of Apply completed in the summer of 1987 by I-Chen Wu, the GETROW/PUTROW
model was used first. Then code was written that would combine the code generated for GETROW and PUTROW
into one code body that would effectively implement COMPUTEROW. This eliminated the ease of use problem
noted with W2 programs; all Apply programs used the COMPUTEROW model, and achieved respectable
performance without programmer difficulty.

3

2.1.2 Design Tradeoffs

A number of design tradcoffs were made when the variable-size image processing code was implemented. These
included the I/O model within the array, the choice of where to do data type conversions, and the use of direct
memory access (DMA).

The most important tradeoff was the I/O model. COMPUTEROW could not be used since the number of send
and receive statements generated during the central portion of COMPUTEROW could not be known at compile
time. Therefore, the old GETROW/PUTROW model was used. A modification had to be made for the PUTROW
portion of the code, since the output buffer could not be initialized with zeroes at the interface unit. This was not
possible because the number of zeroes that had to be generated at the interface unit was not known at compile time.
However, since the Apply code used variable-bounds loops in the Warp code anyway, the output buffer could start
at zero length before cell 0, and simply grow by the amount of data each cell added to the buffer after each cell. The
code for GETROW did not change significantly. The result was that the code generated for variable-sized image
processing was much simpler than the code for fixed-size image processing.

The resulting Warp programs accepted two numbers at run time; the image width and height. Inside the Warp
array, these were used to calculate the number of columns for each cell, just as the calculation was done at compile
time by the Apply compiler for fixed-size images. The cells then took the calculated number of columns from each
row, passed them on to later cells, and computed the calculated number of outputs.

Conversions posed a second problem. For best efficiency, byte images must be converted to floating point for
processing by Warp, which has two floating point units (add and multiply) and only one integer unit. This
conversion could occur in the cluster processor, in the interface unit, or it could be done partly in the cluster
processor and partly in the Warp cells. The tradeoffs between the three methods are as follows:

" Conversion cia the cluster processor. This is the simplest method to program, and also the slowest.
The input cluster processor needs merely to take each byte data and perform a floating point convert on
it, then send it to Warp (and similarly for output). Since the cluster processor can access individual
bytes there is no restriction on loop bound size, etc. However, converting a 512x512 image in this way
can take as long as a second or more, creating a serious bottleneck since Warp can process such an
image in a hundred milliseconds or less. Also, with this method byte images take longer to process that
floating-point images, which do not need to be converted. This is counte:intuitive; byte images should
take less time since they are smaller.

" Conversion in the interface unit. This is the method used in processing fixed-size images; the
interface unit was explicitly designed to do this. It is the fastest, but also the most difficult to program
because controlling the interface unit is difficult. In particular, to deal with this control problem the W2
compiler makes it necessary that the number of data to be converted be known at compile time, by
being defined inside a fixed-size loop.

" Conversion partly in the cluster processor and partly in the Warp cells. In this method each byte
of image data is converted to a 32-bit word by being sign extended in the cluster processor, and then
this word is sent through the interface unit without conversion. The 32-bit integer is converted to
floating-point in the Warp cells. The conversion to a 32-bit integer is necessary because the Warp cells
cannot access byte data. This method is only slightly more difficult to program than conversion in the
cluster processor, and is faster since the floating point unit in the Warp cell is used instead of the one in
the cluster processor, but it is not as fast as conversion in the interface unit since four times as much
data is transferred between the cluster processor and the interface unit.

Given these considerations we first implemented variable-sized image processing using conversion within the
cluster processors, in order to get a working implementation without worrying about performance. Later, when we
implemented the DMA buffering code, we changed to use conversion in the interface unit.

DMA and conversion operations had similar restrictions. In order to use DMA, the number of data transferred in
one DMA operation must be known at compile time; as with conversion in the interface unit, this restriction is
enforced in the W2 compiler by requiring the send statements for the data to be transferred with DMA to be within a
loop with bounds known at compile time. Because of this restriction we did not use DMA in the irst

4

implementation of Apply with variable-sized images; DMA was added only later.

The DMA and conversion operation restrictions were finally addressed by having Apply split each row into a
number of fixed-size messages, with the message size being known at compile time. (This message size is chosen to
be a constant fraction--one-fourth of the maximum image width specified by the user, in the current
implemcntation-in the Apply compiler). Apply rounds up the image width to be a multiple of this fixed size and
then, for each row, it sends a number of fixed-size messages, with the send statements for each message being inside
a fixed-size loop. Since the innermost loop is fixed in size, the W2 compiler uses DMA to transfer the data from the
cluster processor memory to the interface unit and uses the interface unit to perform data conversions. The extra
data transferred this way (to fill out the fixed-size message) are discarded by the first cell in the Warp array.

The resulting implementation of variable-sized image processing produces code that is efficient and somewhat
simpler than the COMPUTEROW code for fixed-size image processing. The user specifies a maximum image size,
and the Apply compiler generates code that can process any size image up to and including the maximum.
Processing images of variable size is no harder than fixed-size image processing.

2.2 Mirrored Borders

When an Apply operator falls off the edge of the image, several different actions may be desirable. The simplest
action i.3 to fill the outside of the image with a constant value. From the beginning, Apply has supported this action.
There are several other actions that are currently in use in image processing:

" Border replication. The last column and row are repli ated outside the image.

" Border mirroring. Rows and columns from the interior of the image are replicated outside the image,
so that image element (- 1,0) is the same as element (0,0), element (-2,0) is the same as (1,0), and so on.

* Wraparound. The first column of the image is considered to be adjacent to the last column, and
similarly for rows.

Each of these methods has advantages. Compared with filling with a constant, both border replication and border
mirroring tend to give better results for operators that smooth or perform edge detection on the image: they will tend
to give little false response near the edge of the image. Border mirroring will work well with smoothing even if the
last row or column is anomalously large or small, while border replication would tend not to perform as well in this
situation. However, border replication works better for some edge detectors, as was pointed out to the author by
Gooitzen van der Wal, of SRI's David Sarnoff Research Laboratories. Consider the image shown in Figure 2-1(A).
Border mirroring produces the image shown in Figure 2-1(B), while border replication produces the image shown in
Figure 2-1(C). A comer detector, or an edge detector that also responded to comers, would incorrectly respond
more strongly at the boundary of Figure 2-1(B) than at the boundary of Figure 2-1(C).

(A) (B) (C)

Figure 2-1:
(A) Image; (B) Image with mirrored borders; (C) Image with replicated borders

Wraparound is most useful when extremely low-frequency spatial components are being studied. The lowest
frequency components of the image extend all the way across the image and can be detected with a low-frequency

5

operator with border wraparound.

Border mirroring was implemented in a straightforward way; we simply replicated the image top and bottom rows
as they were sent to the Warp array (that is, the cluster processor sent these rows mre! than once), while the column
replication was done inside Warp, in the first cell. We did not do column replication in the cluster processor since in
general this would make it impossible to send the image to Warp a word at a time, since bytes would have to be
repacked.

6

3. The Second DARPA Image Understanding Benchmark on Warp

The Second DARPA Image Understanding Benchmark addressed the issue of system performance on an
integrated set of tasks that interact in a way typical of complex vision applications. The go.' Jf the benchmark study
was to gain a better understanding of vision architecture requirements that can be used to guide the development of
future vision architectures.

In the First DARPA Image Understanding Benchmark [6] the problems to be solved were specified, but the
algorithms were not given. This led to a great variety of different approaches to implementing each of the
algorithms, which made it difficult to compare different architectures. The performance of an architecture depended
on ihe algorithm chosen and the degree of optimization in its implementation as well as the performance of the
computer. In this study both the problem to be solved and the algorithm were specified, and C code was given to
solve the problem on a Unix computer.

In this benchmark, a complete image recognition system-the recognition of a two-dimensional mobile-was
tested. This is in contrast to the first benchmark, where individual routines were tested. This approach has the
advantage that overall timing is more realistic, since it measures the times that will be encountered when actually
using the architecture to do recognition.

3.1 Benchmark Description

The benchmark involves the recognition of an approximately specified 2 1/2 D "mobile" sculpture composed of
rectangles, given images from intensity and range sensors.

A complete description of the benchmark is available elsewhere [10. We describe it here in outline form.

The problcm is to recognize a two-dimensional mobile given a range and intensity image. The mobile is shown in
Figure 3-1. It consists of a number of rectangular regions, connected by invisible threads, oriented randomly in
planes normal to the line of sight. The rectangular regions have different solid grayvalues.

The input to the program is two 512x512 images. The first is a byte intensity image, the second is a floating-point
depth image. The two images are registered, and are taken with parallel projection.

The program is given a set of 10 mobile models, and must choose the correct matching model from its set. There
is only one correct match for each image. There are three factors that complicate recognition: the rectangles are
allowed to rotate in the image plane around the invisible threads connecting them to the rest of the mobile, there are
superfluous rectangles in the scene, and the depth image has added noise.

The processing in the task is required to proceed in the following steps:
1. Perform connected component labelling on the input intensity image. Since it is noise-free, it does

not have to be filtered or thresholded first. Connected component labelling will correctly identify the
rectangles in the image as long as they do not partially cover spurious rectangles of the same color, or
are hidden by other model or sr urious rectangles.

2. Trace and compute k-curvature of the borders in the labelled intensity image.

3. Smooth and perform zero-crossing detection in the first derivative of the border k-curvature. This
detects corners in the intensity image.

4. Count corners of components. If there are three right angles in sequence, declare a rectangle.

5. Median filter the dcpth image. Either 3x3 and 5x5 operators could be used.

6. Perform a Sobel operator on the smoothed depth image to detect edges.

7. Using a depth-first grapi -:hini-. tehnique, match the hypothesized rectangles against the model.
Verify matches by prol,;r ic images, using two techniques:

7

A

Figure 3-1: A Simple Mobile

a. Depth probe: within the hypothesized rectangle region, examine pixeis; pixels deeper than the
hypothesized rectangle count against it; pixels closer have no effect (since there could be a
rectangle covering the hypothesized rectangle); and pixels at the right depth and of the right
grayvalue count for the rectangle.

b. Hough probe: perform a hough transform on the region of the processed depth image within
the rectangle and look for peaks at a predicted location.

8. Paint the detected model over the intensity image and output the result.

This recognition procedure is not necessarily the fastest method for solving the problem. In fact, as was pointed
out by C. H. Chien of Carnegie Mellon, it is possible to "short-circuit" the benchmark. A simple histogramming
operation applied to the depth image is sufficient to obtain the depth information of most of the rectangles, and these
rectangles can be extracted using a multi-value thresholding technique in a later stage. There may be cases where a
few rectangles have the same depth due to the resolution used in extracting depth information from the histogram of
the depth image. These cases are rare and thus will not affect the result of matching.

The matching can be carried out in two steps: the initial matching and verification. The initial matching is trivial
due to the assumption that all the rectangles are parallel to the image plane. This assumption allows us to impose an
ordering on the rectangles in the mobile and to use "relative depth" as the sole feature for the initial matching.
Note that the sizes, colors, positions and orientations of the rectangle have not been used up to this stage.

At the end of the initial matching, the depth of each rectangle of the mobile in the depth image can be easily
determined, and this information can be used to guide the extraction of each rectangle in the depth image. As
mentioned earlier, a simple thresholding technique is enough to determine which depth pixels are associated with
each rectangle. The comers of that rectangle will be the ones with extreme values in x- or y- coordinates. Three
comers can uniquely determine a rectangle (a small number of additional depth pixels may be required in the
presence of noise). Edge detection, boundary following, or connected component labeling are unnecessary for
extracting the rectangle. The extracted information is then used to verify the result of the initial matching.

Notice that the intensity image has never been used at all. It may become necessary to resolve some ambiguity in
the depth image by using the intensity image, but this can easily be done by probing the intensity image at certain
points, without needing to go through any sort of elaborate processing.

8

We now discuss each of the routines in turn.

3.2 Connected Component Labelling

The connected components algorithm was implemented by H. Printz [2, 5] of Carnegie Mellon. It uses a divide
and conquer technique where slices of the image are first labelled independently on each cell, then the labels are
unified by examining the borders between the cells. The merge is performed in a sequential pass; cell 0 merges its
labels with cell 1, then cell 1 with cell 2, and so on. Finally, each cell passes its labelled image forward through the
array where it is relabeled by the following cells, if necessary, to merge regions.

We did not attempt to use the recommended algorithm in this step, because we had existing code, and because the
recommended algorithm would probably perform much worse than the Printz algorithm. The recommended
algorithm propagates labels within the image without using an equivalence table. Each pixel is given a unique label
based on its row and column coordinates, then labels are propagated from one pixel to another if both pixels have
the same grayvalue in the original image. By performing repeated propagations in different directions, all pixels can
be correctly labelled.

Depending on the order in which different directions are chosen, the worst case pattern can change, but for any
choice of directions there is a pattern that requires this algorithm to make a number of steps on the order of the area
of the image. (For example, if the different directions are always followed in the same order, a spiral pattern one
pixel wide will a number of steps equal to at least half the image area). This is very poor performance in the worst
case. However, it was not clear from the algorithm description whether worst case behavior was an issue. In the
test images, all of the interesting regions were compact and rectangular. If we ignore the background, only a few
passes of propagation were necessary.

In any case, this algorithm is better suited to large processor arrays with simple processors than to small processor
arrays with powerful processors like Warp. The only operations that are performed in the recommended algorithm
are comparison of pixel values, and assignment of the smaller of two integer values. This means that computers that
provide these facilities, and no others (such as address calculation or floating-point arithmetic) in their hardware will
be at an advantage for this algorithm.

The structure of the algorithm also makes it well suited to large processor arrays. Each step involves transfer of a
label value and pixel value to a pixel's neighbor. The time for this step is ,i/P. where T is the time for the
computation for a single transfer and computation, I is the number of pixels in the image, and P is the number
processors. The best case is obtained when I=P, so that there are as many processors as image pixels -a very large
number. For Printz's algorithm, the execution time is AP+B/P, where A is the time to do a merge step, and B is the
time to label the entire image serially. The best case is obtained when P=,fA. With the parameters taken from the
first DARPA IU benchmark, this gives P=16, which is much closer to the Warp machine's actual number of
processors.

The connected components code consisted of 226 lines of W2 code. (Because the problem to be solved involves
a global computation, ualy W2 could be used to program it on Warp). Of the 226 lines, 60 were in the labelling of
the image locally, and 62 were in the computation of the global maps. The remaining 104 statements were
declarations and I/O statements to read the image into and out of the Warp array.

A comparable program for a serial computer written in FORTRAN, CLAB from the Spider library [8], consists of

59 lines. The W2 code is thus nearly the same length (in its serial section, i.e., labelling the image slices
individually) as the FORTRAN code. This reflects the similar level of the W2 and FORTRAN languages. The
merge operations needed because of parallelism double the total code, and additional I/O statements and
declarations double it again.

9

3.3 Tracing and Computing K-Curvature

This step could be broken down into two steps: (1) computing the direction numbers of boundary pixels in the
labelled component image; (2) extracting the boundaries, smoothing them, taking their derivative, and detecting zero
crossings. The first step could be done purely locally, since the direction number of a pixel depends only on the
pixels in a 3x3 neighborhood around it. We implemented step (1) in Apply, and used the provided C code to
perform the rest of the computation.

The Apply code was a straightforward translation from the provided C code. We show the Apply program In
Figure 3-2 to illustrate its simplicity. For comparison we show the original serial C code in Figure 3-3. Note that
the Apply program is shorter. Because the Apply compiler automatically handles border processing in a reasonable
way, it is not necessary to include the lok, tok, etc. tests in the user program. Also, Apply makes image pixel
references relative to the current position, which eliminates the x and y variables in the C program.

procedure setchain(intensity in array(-l..l,-l..l) of real,
ch : out byte)

is
cval: integer;

begin
ch := 0;
cval := intensity(0,0);

if intensity(-l, 0) = cval then ch : ch I 1; end if;
if intensity(-l, 1) - cval then ch : oh 16; end if;
if intensity(0, 1) - cval then ch := ch 2; end if;
if intensity(1, 1) - cval then ch := ch 32; end if;
if intensity(1, 0) = cval then ch := ch 4; end if;
if intensity(1,-i) - cval then ch := ch 64; end if;
if intensity(0,-i) = cval then ch := ch 8; end if;
if intensity(-1,-) - cval then ch := ch 128; end if;

end set-chain;

Figure 3-2: Apply Code for Computing Direction Numbers

The second step of the code was executed using the provided Sun C code. This included a scan of the direction
number image in order to trace boundaries, followed by three convolutions of the boundary vectors to detect corners.

This step could have been made faster by a Warp implementation. There were two reasons we did not use Warp:
(1) The boundary tracing operation is difficult to do in parallel. The image could be split up among processors, or
the boundaries could be distributed to processors. In the first case, a separate step is required to merge boundaries,
which can be quite difficult. In the second case, locating the boundaries in the image and making sure that different
processors have different boundaries requires a second component labelling pass over the image; and memory
allocation is difficult, since each Warp cell does not have enough memory to store the whole image. (2) The
boundary tracing could be done in parallel on the Sun with other steps in the system, leading to a lower overall time
for the system if it was not done on Warp.

3.4 Median Filter

Depending on the problem, either 3x3 or 5x5 median filtering could be required. We had existing 3x3 median
filter code already in WEB, which had been heavily optimized. The 5x5 code was written new for the benchmark.

3.4.1 3x3 Median Filter

The 3x3 median filter maintains three sorted column lists, only one of which must be updated as the window is
shifted to the left. The three column lists are sorted according to their middle element, forming what we will call the
"smallest," "middle," and "largest" list. The smallest two elements of the smallest list are smaller than at least

10

static unsigned char set chain(intensity,x,y)
bmark byte image intensity;
int x, y;I
register unsigned char ch;
register int cval,lok,tok, rok,bok;

ch = 0;

cval = intensity y) x];

/* set boundary flags */

lok = x > COL MIN;
tok = y > ROWMIN;
rok = x < COLMAX;
bok = y < ROWMAX;

/* 4-connected boundary & 8-connected boundary */

if (tok) (
if (intensity[y - 1] Ex I == cval) ch = ch i 1;
if (rok && (intensity[y - l[x + 1) cval)) ch = ch 1 16;

if (rok) {
if (intensity(y] [x + 1] == cval) ch = ch 1 2;
if (bok && (intensity(y + i][x + 1]) - cval)) ch = ch 1 32;

if (bok)
if (intensity[y + i) [x I = c oval) ch - ch 1 4;
if (lok && (intensityty + 1] x - 1 -= cval)) ch = ch 1 64;

if (lok)
if (intensity[y]Nx - 1 =-cval) ch = ch 1 8;
if (tok && (intensity[y - 13[x - 1 -= cval)) ch = ch 1 128;

return(ch);

Figure 3-3: C Code for Computing Direction Numbers

five elements of the 3x3 window, so they cannot be the median. Similarly for the largest two elements of the largest
list. This leaves five elements; these are sorted. The median of these is the median of the 3x3 window.

In the Warp implementation of this algorithm the image is divided by columns into ten slices, each cell taking one
slice, and the medians are calculated independently in each cell as the image is ted to the array row by row. This
partitioning method wastes computation since each cell has to reinitialize the median filter for each row, as opposed
to partitioning by row, where only one cell has to reinitialize the median filter for each row. It has the advantage of
allowing computation of results on line, and requiring less memory per cell (which was the overriding factor when
this code was implemented on the prototype Warp machine, which had only 4K words of memory per cell.)

3.4.2 5x5 Median Filter

While median filter can be formulated as a local operation, the provided C code used raster order processing to
speed up execution time. This made it impossible to implement the code using Apply, which does not allow the
programmer to take advantage of raster order processing. Therefore, the 5x5 median filter algorithm was a straight
translation of the provided C code into W2. The image is divided into 10 horizontal slices, with each processor
getting one slice. To compute the first median in a row the values in the 5x5 region are sorted and the 131h largest is
chosen. To compute the next median in the row five new values (the right side of the 5x5 region) are inserted into
the sorted list, and the five values no longer in the region are removed from the list. The 13th is then chosen as the

II

median for this window. This process repeats for the rest of the elements in the row.

The programming effort for this algorithm was minimal, since partitioning the image by rows is straightforward,
and processing a row is done exactly the same way as in the C code. This is illustrated by the statement counts for
the different parts of the code; 28 W2 statements were involved in programming the image I/O, and 52 statements
were needed for the computation, versus 67 statements for computation in the C code.

3.5 Gradient Magnitude and Thresholding

The Sobel operator was a straightforward implementation of the provided C code. The Apply code for the Sobel
operator is shown in Figure 3-4. The code development time for this program was only 10 minutes.

procedure grad(imagein : in array (-1..1, -1..1) of real,
threshsquared : const real,
imageout : out byte)

is

xderiv, yderiv : real;

begin

xderiv := 0.25*imagein(-l,-l) + 0.5*imagein(-l, 0)
+ 0.25*imagein(-l, 1) - 0.25*imagein(1,-i)

- 0.5*imagein(1, 0) - 0.25*imagein(1, 1);

yderiv := 0.25*imagein(-l,-l) + 0.5*imagein(0,-l)
+ 0.25*imagein(1,-i) - 0.25*imagein(-l, 1)
- 0.5*imagein(0, 1) - 0.25*imagein(1, 1);

if (xderiv * xderiv + yderiv * yderiv) < threshsquared
then imageout := 0;
else imageout 255;

end if;

end grad;

Figure 3-4: Apply Sobel Operator

3.6 Depth and Hough Probes

The depth and Hough probes were performed as part of a graph matching algorithm that ran on the Sun. The
probe routines were compact loops that consumed the majority of the computation time for the graph matching.
Moving these loops to Warp was straightforward, since they consisted of operations that accessed a rectangular area
of the image, and performed a few simple tests on it.

3.6.1 Depth Probe

The depth probe took place in a bounding box aligned with the horizontal and vertical image axes in which a
rectangle was supposed to lie. Pixels within the region were first tested to see if they fell within the supposed
rectangle (which could have any orientation) and then, if they did, one of several counters was incremented
depending on whether the pixel was deeper or closer than the supposed rectangle, or at the right distance and with
the right intensity value.

Since the processing of each pixel was independent, there was no advantage in dividing the region in some
large-grain fashion, such as splitting it into adjacent strips of columns. Moreover, there was considerable overhead
in doing this, because the padding needed to make the image divide evenly into strips would vary for each region,

12

and would have to be computed at run time, since the bounding box size was determined then. Also, the loops
distributing the image across the cells would have bounds that could be known only at run time, so that the compiler
could not take advantage of known loop bounds to perform various optimizations, such as pipelining. Instead, the
region was distributed across the ten cells by having each cell take every tenth pixel as the region was sent in raster
order from the cluster processor. Once the entire region was sent, the cluster processor sent a series of sentinels that
caused the cells to total and output their counters.

Code download was done only once per execution. It averaged 1.6 seconds (s) with a standard deviation of 1.3 s.
The standard deviation of the code download time is high because the system software must verify, before each
probe, that the code has already been downloaded and must also initialize the machine state. This time is included
in the code download time, but varies with the number of probes. A linear regression model of code download time
of the form a+bN, where N is the number of probes, gives a=185 milliseconds (ms), and b=l 1.3 ms. In other words,
the initial code download takes 185 ms, and the incremental cost (in overhead counted as code download time) for
each probe is 11.3 ms.

3.6.2 Hough Probe

While the image region to be processed could vary, the Hough space produced was fixed. Therefore, we chose to
split the Hough space among cells, and have each cell process the entire image. This led to a straightforward W2
program, the inner loop of which is shown in Figure 3-5.

Each cell receives the pixel, and forwards it to the next cell. The cell then updates its portion of the Hough space,
which is divided by theta values -each cell takes every tenth theta value. The calculation of rho is the same as in
the C code. Once all pixels are processed, the cells concatenate the Hough space and output it to the host

FOR i strow TO endrow-1 DO BEGIN
y :=i - MID ROW;
FOR j := stcol TO endcol-1 DO BEGIN

x := j - MIDCOL;
RECEIVE(l, x, ipixel); SEND(r, x, ipixel);
IF ipixel <> 0 THEN BEGIN

htp :- 0;
FOR theta-offset := 0 TO 80 BY 10 DO BEGIN

theta := theta-offset + cellid;
rho := fix((x*sin[theta] - y*cos[theta]) / RBINSIZE);
IF rho < 0 THEN
BEGIN posx := htp+9; posy := 0-rho; END

ELSE
BEGIN posx htp; posy := rho; END;

hough(posx] (posy] - hough(posx] [posy] + 1.0;
htp := htp + 1;

END;
END;

END;
END;

Figure 3-5: The inner loop of the W2 Hough program

The code was downloaded only once, with an average time of 900 ms, and a standard deviation of 748 ms. The
standard deviation of Hough probe code download time is high for the same reason as with match strength probe.
The linear regression model gives the initial code download time as 179 ms, and the extra time per probe is 13.9 ms.
These times are consistent with those for match strength probe.

13

3.7 Paint Result

After the model was detected, it was painted over the input image and the resulting image was output. In the
provided C code the paint rectangle routine was called repeatedly as the model graph was traversed. This would
have considerably slowed the Warp implementation, since the overhead for program startup is significant. In our
implementation, the rectangle descriptions are stored in a list, which is then passed to the Warp for painting all at
once.

Two different implementations of the paint rectangle routine were tried. In the first Apply code was used. All
rectangle descriptions were passed as parameters to the Apply routine. The Apply program checked to see if its
pixel fell within the rectangle description, and if it did then it was painted. (The rectangle descriptions were ordered
in the same order as the C code would have painted them. Hence the Apply code always produced the same result
as the original C code, even when rectangle descriptions overlapped.)

In the second implementation, which was written in W2, each cell took one tenth of the rectangle descriptions. A
row of the image was passed in, and each cell painted its portions of the rectangles onto that row, passing the painted
row on to the next cell. As before, the rectangles were ordered so that painting happened in the same order as the
original C code.

The second implementation was faster, mainly because some of the testing could be done on a per-row basis
(namely, whether the row intersected with the circumscribing rectangle aligned with the image axes around the
rectangle to be drawn). In the Apply code this had to be done on a per-pixel basis.

The time for this routine was 2.3 s with a standard deviation of 179 ms. Of this, approximately 97% (standard
deviation 0.40%) of the time was spent in the Warp paint rectangle routine.

3.8 Exploiting Task-level Parallelism

Warp is programmed using the attached processor model, in which a general purpose host (a Sun workstation)
runs the majority of the code, which is also the least time-consuming portion, and calls the Warp array to do
time-consuming small portions of the program. In this benchmark, these portions of the code are those that access
images. Almost every operation that touches all or a large portion of the pixels in the image runs on Warp. (The
only exception is the boundary extraction code).

We take advantage of the intrinsic parallelism in this model at several points in the benchmark. Warp can run on
its own, doing some image processing, while the Sun does other tasks in parallel.

Exploiting task-level parallelism in this way allows us to largely eliminate the overhead of reading in images
during the benchmark, which would otherwise constitute ? significant portion of the total benchmark time. Figure
3-6 shows where we were able to make use of task-level parallelism: that is, in "read depth image," "read model
descriptions," and "extract strong cues." "Read depth image" involves reading the floating-point depth image
from disk, and "read model descriptions" involves reading the model descriptions in, where they are stored in
ASCII. Because the depth image is so large, it takes about one second to read; since the model descriptions are
stored in ASCII, they also take about one second to read and translate into internal binary format.

Because the depth image and model data are read in parallel with a Warp computation, they do not contribute to
the total benchmark time; their time is subtracted from the benchmark time. This effect is better than the normal
speedup provided by faster hardware, which is only multiplicative.

While the depth image is being subjected to median filter and the Sobel operator on Warp, "extract strong cues"
runs in parallel on the Sun. "Extract strong cues" is a complex procedure that is difficult to parallelize, and which
would have required a lot of reprogramming to run on Warp. Moreover, since it could be run in parallel, its
execution did not contribute to the total benchmark time (at least in the case when 5x5 median filter was used).

14

F Start

5-6 seconds Initialize

Input intensity< 1 second image

C oncted
"1 Read depth

{seconds Readens dmaept I second

<1 second K-curvature* Read model I 1 second

K(image) descriptions

I second (3x3) -an

10 seconds (5x5) Median filtet

strong 4 seconds< I second [Sobel*[cues

Varies from Initial graph match

10 to
100 seconds Initial linking

Create probe list
I

Probe search*

Paint result*

Figure 3-6: Task-level parallelism in the IU Benchmark

Exploiting task-level parallelism in this way is a powerful and general method of reducing total program time,

because it does not rely on particular hardware features; instead, any routine that does not have dependencies with

later routines can be executed in parallel. Task level parallelism is therefore much easier to exploit than data

parallelism, which was exploited in the routines implemented on Warp; only minimal reprogramming is necessary.

Unfortunately, there are only a few places in the benchmark where task level parallelism can be used. This is due to

the general nature of recognition programs, where almost every reasoning step depends on those preceding it.

15

3.9 Performance Summary

Table 3-1 gives all the performance figures for Warp on the IU benchmark. The times given for indented lines are
included in the first non-indented line above. Means and standard deviations of execution times are also given. All
times are in seconds. All numbers are rounded to three significant digits.

The startup time for Warp programs was estimated to be about 25 ms, not counting code download time, which is
given in the table.

16

Step Sample Test2 Test3 Test4 Test Mean Standard
deviation

Task startuplitualizason (initializing Warp) 5.76 5.96 5.88 6.00 6.04 5.93 0.111

Image input: intensity image 0.780 1.22 1.24 1.22 0.700 1.03 0.268

Image input: depth image 2.74 4.18 4.10 4.12 3.02 3.63 0.694

Model input 1.30 1.02 1.08 1.06 1.18 1.13 0.113

Label connected components 3.98 4.60 4.54 456 4.04 4.34 0.306

Warp code download time 0.400 0.420 0.440 0.420 0420 0.420 0.0141

K-curvature 3.14 2.20 2.72 2-54 2.24 2.57 0.385

Warp code download time 0.260 0.260 0.260 0.240 0.260 0.256 0.00894

Smooth K curvature 1.38 0.780 0.980 0.900 0.640 0.936 0.279

First derivative of curvature 0.420 0.280 0.340 0.400 0.240 0.336 0.0767

Zero-crossing detection 0.320 0.120 0.140 0.220 0.060 0.172 0.110

Final corne detection (includes threshold and AND) 0.160 0.120 0.220 0.200 0.100 0.160 0.0501

Count comca for each component and threshold 0.0200 0.0400 0.0600 0.06001 0.0200 0.0400 0.0200

Convex hull of components 0.0200 0.0200 0.0800 0.0600 0.000 0.0360 0.0329

Test for sequence of three right angles 0.000 0.0200 0.0200 0.0200 0.000 0.0120 0.0110

Final rectangle hypothesis generation 0.0400 0.0200 0.0200 0.0400 0.000 0.0240 0.0167

3x3 Median filter 1.38 1.40 2.00 159 0.352

5x5 Median filter 10.7 8.70 9.70 1.41

Warp code download time 0.290 0.300 0.280 0.880 0.280 0.404 0.266

Sobel (includes cony., grad. mag., threshold) 0.480 0.720 0.940 0.920 0.480 0.708 0.225

Warp code download time 0.320 0.320 0.340 0.320 0.320 0.324 0.00894

Initial graph match 0420 0.220 1.22 1.38 0.240 0.696 0.560

Rectangle matching 0.200 0.160 0.400 0.680 0.160 0.320 0.224

Initial linking 0.220 0.060 0.820 0.700 0.0800 0.376 0.358

Match extension 24.8 4.58 38.6 41.2 3.64 22.6 18.0

Match-strength probe 9.10 2.86 13.6 13.5 264 8.34 5.42

Total probes 91 20 247 239 23

Window selection 0.0200 0.0200 0.240 0.180 0.0200 0.0960 0.106

Classification and counting 9.00 2.82 13.2 13.1 2.56 8.14 5.25

Time per probe 0.0989 0.141 0.0534 0.0548 0.113 0.0922 0.0380

Warp code download time 1.18 0.460 2.84 3.08 0.420 1.60 1.28

1lough probe 15.3 1.68 23.3 25.8 0.960 13.4 11.7

Total probes 58 5 97 95 3

Window selection 0.0200 0.0200 0.120 0.0600 0.000 0.0440 0.0477

Hough transform 12.8 1.44 19.3 20.0 0.880 10.9 9.31

Warp code download time 0.840 0.260 1.06 2.08 0.260 0.900 0.748

Edge.peak detection 2.38 0.220 3.80 5.58 0.0800 2.41 2.36

Rectangle parameteir update 0.0200 0.000 0.000 0.0800 0.000 0.0200 0.0346

Result presentation 2.60 2.52 2.24 2.26 226 2.38 0.171

Beat match selection 0.0200 0.000 0.0200 0.0200 0.000 0.0120 0.0110

Graph traversal and image generation 2.54 2.46 2.16 2.18 2.20 2.31 0.178

Warp code download time 0.280 0.280 0.300 0.280 0.280 0.284 0.00894

Total execution time 52.9 29.9 65.8 69.3 29.4 3 19.1

Table 3-1: Performance of Warp on the WU Benchmark

17

4. Computing Global Image Operations

We now turn to the issue of programming low- and mid-level vision in a machine-independent manner. We have
already developed (and used in the study in Section) a machine-independent language for local low-level image
processing operations, called Apply. Use of this language in the benchmark led to fast implementations of some of
the routines, compared to implementation of other routines with conventional tools. It would therefore be useful to
be able to implement more of the routines with an Apply-like tool.

We propose specific extensions to Apply, then show how those extensions make it possible to program all of the
low- and mid-level algorithms in this benchmark. We then consider what class of image processing operations can
be programmed in the extended Apply. We will prove that it is the class of image processing operations that are
reversible; that is, they produce the same result when applied to the image from the top down, or the bottom up.

In the implementation of the Warp routines discussed in Section , there is a strong difference between those
implemented using W2 and those implemented using Apply. The Apply routines are shorter than the corresponding
C programs, and generally took only a few minutes to program; the W2 routines are longer than the C routines, and
generally required days of careful programming to get right. Here we examine the reasons for this difference.

The W2 programmer has to do several tasks that the Apply programmer avoids:

I. Input and output the data structures from Warp.

2. Sequence the operation across the input data structure. The C programmer must also do this step.

3. Combine separate portions of the output data structure into one structure.

The W2 programmer is also at one other important disadvantage compared to the Apply programmer, W2 code
runs only on Warp, while Apply programs run on several machines, with more implementations underway. It is far
easier to exchange Apply programs between machines, making Apply programs more useful as a medium for the
exchange of ideas, and also Apply programs have a much longer useful lifetime than W2 programs. (For example,
the Apply programs in WEB have been ported from Warp to iWarp and through two changes in Warp/W2
architecture without change, while the W2 programs needed or will need changes in all three cases.)

The W2 programmer, however, has two critical advantages compared with the Apply programmer: (1) W2 is a
general language, and (2) it is possible to exploit raster-order processing in W2, giving greater efficiency. The first
advantage is the reason that connected components and the Hough probe algorithm were written in W2; the second
is the reason W2 was used for median filter and the paint result routine.

We now consider whether it is possible to extend Apply so that it can be made more general, and capable of
exploiting raster-order processing, without losing the advantages listed above.

Let us make a list of requirements for the new, extended Apply:
1. It should be capable of raster-order processing for greater efficiency.

2. It should be capable of computing global image processing algorithms.

Considering the global image processing algorithms in this benchmark, we observe that they all order their
processing in the following way:

1. The image is broken down into sections, one section per processor.

2. Each processor computes a global result on its section.

3. The global results are combined to create the global data structure for the whole image.

Our experience suggests that this divide and conquer approach to global image operations is useful and general.
Therefore, we will use it in the extended Apply as the uniform paradigm for global image operations. We will add
to Apply the ability for the programmer to define a special combining function; this takes the output of two Apply
functions applied over areas of the image and combines them. For example, the combining function for histogram is

18

the operation of adding the two histograms. We also add a termination function, which is applied once to the final
global data structure; this can discard intermediate results needed for the combining operations and produce the
global output. In order to initialize the data structures that are being computed, we add an initialization function.

We will also add raster-order image processing to Apply. An important issue is whether this would make it more
difficult to implement Apply (since restricting the programmer to order-independent operations was supposed to
make Apply compilers easier to implement). Our experience suggest that it does not; all Apply compilers (except
the one for SLAP [4]) process the image in raster order anyway. (Raster order processing makes sense only on
processors that have much fewer processors than pixels. This is the reason it would be hard to implement efficiently
on an architecture like SLAP. The same problem exists on other architectures, for example the Connection
Machine [9].)

Raster order processing implies that there must be some way of initializing the computation, since raster order
algorithms assume some previous state. The initialization function we added in order to compute global operations
can serve this purpose. The current Apply function becomes the function that is applied repeatedly, in raster-order,
across the image. Note that the presence of an initialization function allows us to start the raster-order processing
anywhere in the image; this makes it possible to still process the image in parallel, with raster-order processing at
each cell.

Raster order processing allows us to think in terms of processing regions of pixels. Because of this, we can add a
useful restriction to the applications of the combining function; we require that Apply use it to combine global
variables computed only over adjacent regions of the image. This makes it easier to implement many global image
operations, for example connected components.

To summarize, extended Apply programs consist of up to four parts:
1. An initialization function, which can be run anywhere in the image.

2. A raster-order function, which is applied in raster-order across the image (wrapped around the borders
of the image). The first execution of the raster-order function is guaranteed to be preceded by an
execution of the initialization function.

3. A combining function, which combines the outputs of any two image regions to produce an output for
the concatenation of the two regions. In order to make programming easier, we stipulate that the
combining function will be applied only to adjacent "swaths" (groups of consecutive rows) of the
image.

4. A termination function, which is applied once after the output of the entire image is computed.

It is not necessary to have all these parts in an Apply program; only the raster-order function is required.

To illustrate how the Apply compiler could use these functions on different parallel computers, let us call the
initialization function I, the raster-order function R, the combining function C, and the termination function T. On a
serial processor, these functions will be executed as follows on a NxN image:

I0,R(O,O),R(O,l) .. R(O,N),R(I,0) .. R(N,N),T0
Subscripts are used to represent the im:.ge pixel at the center of the window processed by the function.

On a multiprocessor where the image is broken down horizontally, each processor taking an adjacent set of rows,
a similar program will be used, except that each processor will process only its rows, and the combining function
will be applied to merge results from adjacent stripes. One processor's program might look like this:

l(i,O),R(i,O),R(i,1) .. R(iN),R(i+1,0),.... R(j,N),C0
where the application of Co merges this processor's results with the results from some other processor. The order
of the combining operations depends on the interprocessor communication facilities.

If we partition the image vertically, each processor taking an adjacent set of columns (as in the Apply Warp
implementation) we can still implement raster order processing by passing intermediate results between processors
after each has completed processing its portion of the columns. The program on the first processor looks like this:

19

I(i,O),R(i,0),.... R(ij), Sendo

where SendO sends the intermediate results from this processor to the next. Intermediate processors have this
program:

ReceiveO,R(i,k) . R(i,0),Send0

and the last processor has this program:

ReceiveO,R(i,k) R(i,0,CO

Processing the image in this way creates a pipeline of processors, staggered diagonally across the image. After
processor 1 has started processing the first row, processor 0 goes on the process the second. This mapping would be
efficient only on computers with low communications overhead, such as Warp.

There are several ways of merging regions computed on different processors. With only nearest-neighbor
communications in a linear processor array, regions would be merged serially -i.e., the first region is merged with
the second, this result is then merged with the third region, and so on, resulting in a tree cf merge operations like that
shown in Figure 4-1. On a machine that has more flexible interprocessor communications facilities, regions can be
merged in parallel as shown in Figure 4-2.

Figure 4.1: Merging results from adjacent image regions serially

Figure 4-2: Merging results from adjacent image regions in parallel

The image can be broken down differently, for example by columns, or by allocating a square region to each
processor. Dividing the image in such a way as to give each processor a complete row has the advantage that Sendo
and Receive() functions are unnecessary. However, breaking the image down in other wa, s also has advantages.
Dividing the image by columns allows us to compute local Apply operations on-line; as each row is fed to the
processor array, another row of results is computed. Dividing the image into squares allows us to use more
processors efficiently, since Apply programs must duplicate processing at the region perimeter, and the rectangular
region of a given area with the shortest perimeter is a square.

There is an important limitation in the divide and conquer when we try to reduce execution time by using more
and more processors. Because of the overhead of the merge step, execution time decreases until a certain point,
after which using more processors actually results in longer execution time. The number of processors that gives the

20

shortest execution time depends on the algorithm, the image size, and the interprocessor communication method.
Let A be the Lime to merge two adjacent regions, and B be the time to process the entire image in raster order. With
serial merging of regions as in Fi,,,'re 4-1, the optimal number of processors is "B_"A; on a two-dimensional array of
cells with two merge steps (one horizontal and one vertical) the optimal number is (B/A) 2t3; and with the merge
steps implemented as in Figure 4-2, each merge halving the number of regions to merge, the optimal number is
BIn2/A. Table 4-1 gives the optimal number of processors for three algorithms: image sum, histogram, and
connected components, all on 512x512 and 10,000xlO,000 images. The time for 512x512 connected components
comes from its Warp implementation in the First DARPA image Understanding Benchmark; the other times are
estimated.

We also give the "knee" of the execution time profile, where the benefit (increase in speedup) per unit cost
(decrease in efficiency) is maximized [3]. Defining the efficiency of the parallel implementation on N processors as
EN=Tt/(NTN), where Tk is the execution time on k processors, this point is the k for which E/Tk is maximized. The
point at which this happens is the most cost-effective number of processors to use. For a linear array, this number of
processors at the knee is ,B/-3A; on a two-dimensional array, it is (B/4A) 2/3. There is no closed form solution for the
number of processors with parallel merging; it is N in the equation N=(B/A)In 2/(InN+2).

Algorithm Image size B/A Serial merge Two merge steps Binary tree merge

Max Best Max Best Max Best

512x512 262,000 512 296 4100 1625 181,000 15,600
Image sum 1OKx1OK 100,000,000 10,000 5773 215,000 85,499 69,300,000 4,030,000

512x512 1020 32 18 102 40 710 106
Histogram I0Kx10K 391,000 625 361 5340 2120 271,000 22,500

512x512 256 16 9 40 16 177 32
Connected components 10Kxl0K 5000 71 41 292 116 3470 430

Table 4-1: Global operations with different communications methods

Table 4-1 gives us some justification for allowing the programmer to assume that the image is divided only by
rows when writing the combining function. For algorithms as complex as histogram, the overhead of the merge
operation is great enough so that there is not enough parallelism available to require dividing the image in this way.
The only cases where the available parallelism exceeds the number of rows are image sum with two merge steps or
parallel merging, and histogram for binary tree merge (and even there the most cost-effective number of processors
is near to or less than the image height). Even if we allowed image subdivision by columns, the Apply programmer
and compiler could not make good use of it except with extremely simple merge operations. (In the absence of a
combining function the Apply compiler can still divide the image by columns, without introducing any extra
overhead, just as the current Apply does in its implementation on Warp.)

4.1 Benchmark Global Image Processing Operations in Apply

We now consider how the global image processing operations in this benchmark can be written in the extended
Apply.

We will sketch the implementations of each algorithm and avoid detailed questions of their implementation in the
new language. We order the algorithms in order of difficulty.

4.1.1 Median Filter

The median filter algorithm can be written using a raster-order function as follows:
At the beginning of each row, the raster-order function sorts the elements in the window and stores
them in a list. It then selects the median element from this list; this is the output. In preparation for
moving the window to the right, the leftmost elements of the window are deleted from the list, and the

21

new rightmost elements are added.

Since the median filter algorithm does not compute a global result, there is no need for combination or
termination functions.

4.1.2 Paint Rectangle

As supplied with the benchmark, the paint rectangle algorithm performs an important optimization; for a given
rectangle, it determines from its bounding box whether or not the current row of the image intersects with the
rectangle or not. Our extended Apply program can make the same optimization:

* At the beginning of each row the raster-order function determines, for the current row, whether or not it
intersects each of the rectangles being painted. It then goes through each of the intersected rectangles in
order (from most distant to nearest), determining if the current pixel lies within them, and repeatedly
assigning the current pixel the color of the rectangle within which it falls. The result is that the current
pixel gets the color of the nearest rectangle containing it.

4.1.3 Depth Probe

The depth probe operation as supplied with the benchmark processes only with the bounding box of the rectangle
that is being probed. It computes a simple global operation on this rectangle:

" The initialization function zeroes the various counters: points too deep, points at the correct depth, and
other points. It also zeroes a variable that keeps track of the sum of depths of points at the correct
depth.

" The raster order function first determines if a pixel falls within the rectangle. If it does, it updates the
appropriate counter, and adds its depth to the sum of depth variable if it is at the correct depth.

" The combination function simply adds together corresponding variables from the adjacent regions.

" The termination function calculates the average depth by dividing the sum of depth variable by the total
number of correct points.

Note that the W2 program implemented for the benchmark used a different method of partitioning the image than
any we have proposed for implementing extended Apply programs. The image was dealt out to the processors, one
pixel at a time, with no concern for how the processors mapped onto the image; each of the ten processors simply
took every tenth pixel. This was done because there is no dependence whatsoever between adjacent pixels in the
code as supplied with the benchmark, and because it was easier to program.

However, the extended Apply makes it possible to propose a refinement in the algorithm, which can also be used
in the paint rectangle routine. For each row, it is possible to calculate the starting and ending pixels in that row that
fall within the rectangle; this computation can be done in the raster-order function. The resulting code avoids having
to test every pixel for whether it lies in the rectangle. Since this test is difficult, involving several floating point
operations, the resulting code is faster, and no more difficult to implement in the extended Apply.

4.1.4 Hough Probe

Hough probe performs a Hough transform on the Sobel-processed depth image to find rectangle edges. The
region of the image processed is localized, but the Hough transform produced is not, although only a small portion
of it is actually used. Using the divide and conquer model in this way has serious implications for memory usage.
We present two different implementations of Hough probe in the extended Apply. In the first, we divide the image:

* The initialization function zeroes the Hough space, and also calculates the sine and cosine tables that are
used to upda'c it.

* The raster order function first determines if the pixel is non-zero. If it is, it increments all elements of
the Hough space that are mapped by this pixel; this is a sine wave in the Hough array.

22

* The combination function sums the two Hough spaces from the adjacent regions to give the new Hough
space.

There is no termination function because the final output of this algorithm is the Hough space. However, we
could implement more processing in the Hough probe by including some of the probing for weak and strong edges
in the termination function. This would make it unnecessary to output the Hough space.

This implementation of Hough probe requires each processor to store the complete Hough space; worse, when the
two Hough spaces are combined one processor must store two of them. This is unfortunate, since in parallel
processors memory is usually at a premium. The Hough space used here is 180x512; this would not fit, for
example, in the Warp cell's 32KW memory, or in iWarp's 128KW memory.

The W2 code implemented for the benchmark divides the Hough space among processors. We can do this in the
extended Apply, by treating the output Hough space as an image. In this way, updating the Hough space becomes
similar to a graphics operation, with the output Hough space being the output image:

" The initialization function calculates sine and cosine tables as before. (Since the initialization function
is run at the beginning of a row, and the Hough array is indexed as (p,O), we must initialize the
complete sine and cosine table for each row).

" The raster order function need only consider, for a given Hough pixel, what image pixels map onto it.
This is a line in the image; the raster order function indexes along this line, and increments the Hough
pixel for each non-zero image pixel.

There is no combination or termination function, because we have formulated Hough transform as a local
operation by treating the input image as a global parameter. This algorithm could actually be implemented in the
current Apply as it is formulated here. (It was not implemented in this way for the benchmark because of technical
restrictions in the current Apply; global parameters must have dimensions that are known at compile time. The
subimage processed by the Hough probe is determined at run time).

The second implementation of the Hough probe has an advantage when only a small part of the Hough space is
actually needed, as here (where strong and weak edges are searched for in part of the Hough space). Only that part
of the image that maps on to the corresponding portion of the Hough space will be examined, if we precede the
raster order function by a test if the Hough pixel is needed. In the first implementation of Hough transform, there is
no good way of avoiding this unnecessary computation.

In this implementation, the input image is stored at all processors, while the Hough space is distributed. If the
input image is large, it may not fit. In this case, it is possible to process the input image in slices, incrementing the
Hough space appropriately for each slice. This results in some unnecessary computation (because the line
parameters for the image scan have to be recomputed for each slice), but it can make the memory space used for
each pass arbitrarily small.

4.1.5 Connected Components

One of the assumptions underlying the divide and conquer model imp!emented by the extended Apply is the idea
of data reduction. The output data structure of this level of vision is assumed to be smaller than the input, which is
an image. This assumption, which is true of most vision algorithms at this level, is not true of connected
components, since the output data structure is an image, just like the input. This assumption is also violated by
Hough transform, but as we have seen it is not difficult to deal with this problem in Hough transform, because of the
many sources of parallelism. It is harder to deal with it in connected components, however.

Connected components can be formulated in many different ways. These different methods have significantly
different implications for the type of architecture that implements the algorithm most efficiently. The recommended
algorithm for the benchmark is different from the algorithm we implemented on Warp; this is because the
recommended algorithm is more suitable for a large processor array, while the algorithm we implemented is better
suited for a small processor array like Warp. In this section we will examine both the algorithm we actually

23

implemented and the recommended algorithm from the point of view of the extended Apply.

First, let us consider the algorithm we actually implemented. It breaks down into three parts:
1. Split the image into separate parts, allocating one region to each processor, and label them separately,

building an equivalence table for each part.

2. Examine the boundaries between the parts and merge the equivalence tables.

3. Apply the merged equivalence table to the image, producing the completely labelled image.

The final step is actually done by application of the first cell's equivalence table to the entire image, followed by
application of the second cell's equivalence table, and so on. Doing the applications in this way allows us to make
only a single forward merge pass (from the first cell to the last) across the equivalence tables, instead of having to
make both a forward and backwards pass, and also avoids having to create a unified global equivalence table.

We will put the first two steps of the above algorithm into one extended Apply program, and put the second step
into a second program, since each requires a pass over the image. The first two steps in connected components can
be written as the following extended Apply program:

The initialization function zeroes the equivalence table.

If the new pixel is non-zero, the raster order function gives it a label, copying the label from the pixel to
the left, left and above, above, or right and above, if any of them are non-zero, and otherwise assigning
it a new label. If two of these pixels are non-zero and have different labels, it performs a union between
the two labels and assigns the smaller of them to the new pixel. (A standard UNION-FIND
algorithm [1] can be used, or see below.) The labelled pixels from the top and bottom boundaries of the
image region are saved in a special buffer.

* The combining function merges the two equivalence tables by stepping along the touching boundaries,
noting touching non-zero pixels, and performing a merge between the two equivalence tables.

There is an important optimization that can be performed in the raster-order function; because the image is
two-dimensional, it is not necessary to perform a complete merge when two labels are merged. A region that is
inside a second region can never be merged with any regions outside the second region. This optimization has been
taken advantage of by several authors [5, 7].

The third step is a simple Apply program:

o The raster-order function simply looks up the pixel in the equivalence table and outputs its mapping.

This implementation of connected components suffers from one flaw, which was partially overcome in the W2
program implemented for the benchmark; the number of region labels can be potentially very large, as much as
one-quarter (for 8-connected components) to one-half of the image pixels (for 4-connected components). This
makes the equivalence table very large, in fact much too large to fit in one Warp cell's memory. In practice,
however, (and in this benchmark) the number of components is not this great.

The W2 program addressed this issue by maintaining separate equivalence tables on each cell, which were never
completely merged. As long as an individual cell did not need to label more components than would fit in its table,
the algorithm would work. We cannot use this approach in the extended Apply, since it maintains an idea of a single
value of all global variables for the entire image.

This restriction shows one of the assumptions behind the divide and conquer model that we are using in Apply;
that is, that there is a reduction in the size of data being processed. Otherwise, the divide and conquer model
becomes inefficient. In connected components this assumption is normally satisfied; but in extreme cases, it may
not be, and connected components will have to be implemented directly in the target computer language, or in a
different way.

Another way connected components can be implemented is as described in the algorithm supplied with the
benchmark. In this algorithm, labels are simply propagated pixel to pixel, and no global equivalence table is used.

24

The simplest way of implementing this is as two ordinary Apply programs. The first initializes the image:
* Assign each non-zero pixel a label based on its position in the image.

while the second, which is executed repeatedly, propagates the labels:

* Copy the minimum of the adjacent non-zero pixels and the current pixel to the current pixel.

This implementation is extremely inefficient, however. Each pass moves a label only one pixel, and the longest
connected component in an image can have a length on the order of the area of the image; so the running time of the
algorithm is proportional to the image area. By taking advantage of raster-order processing, we can propagate labels
all the way across one row or down one column in one pass, but this is not especially useful since propagating them
in the other direction is just as hard as before.

4.2 Theoretical Restrictions of the Extended Apply

So far, we have taken a practical approach to understanding the class of image processing operations that can be
computed in the extended Apply; we showed how several of the benchmark algorithms can be implemented in it.
Now we consider the class of operations that can be implemented in extended Apply from a theoretical point of
view.

Suppose we have a global operation GO to be performed over an image I=(ao a,). Let it be implemented by

a series of applications of some raster-order operation RO:

G(I)=R(a0 ,R(a 1 .. R(a, 0)))
RO is the raster-order algorithm that is used to implement GO on a serial computer. For example, if GO is
"calculate the histogram ho" then R(a,h) is the operation "add 1 to h(a)," and the output of RO is the new
histogram.

On a parallel machine, we will execute a series of operations of RO on different subsets of the image, then

combine them somehow. We do this using a new function CO such that

C(R(a0, R(a 1 ai. , R _))),R(ai , R(ai+,. . . ,R(a n, O))))=R(a0,R(aI,... ,R(a n, 0)))

for any O<i_ n. R0 is the raster-order function in extended Apply, and CO is the combining function (we are
ignoring the initialization and termination functions, which do not affect the proof.)

It turns out that for any local function R0, is is possible to define a function CO that combines two outputs of RO
to produce the same result as repeated applications of a single instance of R0, so long as applying RO to a sequence
of data produces the same result as applying it in the reverse order.

The proof is as follows. Suppose we have the results of applying RO repeatedly to two sequences A and B, and
we want to compute the result of applying RO to AI1B. (AIIB is the concatenation of the sequences A and B). We
write R*A for the output of applying RO to A, so we want to compute R*AIIB given R*A and R*B. Given RB, we
find (by enumeration, if necessary) a sequence C such that R*C=R*B. We then define

C(R*A,R*B)=R(c O,R(c l ,....R(cm,R*A)))

Now we show that C(R*A,R*B)=R*AIIB. Consider the graph of applications of RO that led to R*B=R*C, as shown
in Figure 4-3. Below the point at which R*B is computed, one branch of the graph leads down the application of RO
to the (ci}, and another branch leads down the application of RO to the {by}. We extend this graph upwards to the

computation of R6AIIB by applying RO to the (ak). Now, since RO is is reversible, we can invert the graph and get
the same result R*AIIB below c0 . But this result is exactly what we have defined as C(R*A,R*B). This completes the
proof.

This proof does not show that CO can be computed efficiently. In extended Apply, the programmer is responsible
for defining Co reasonably. Note that if the programmer's definition of CO computes the same result regardless of
the order of application of R0, then RO does not have to be reversible. Also, CO may not compute the same result,

25

E*AIIB = C(L A, I!B)ap
ap-1

a2
a1
ao

L*C=LB
Cm bn

c b
t

C2 ,4 b2

Figure 4-3: Graph of applications of RO to compute R*AI

but different results may be equivalent for the programmer's purpose. For example, floating point computations are
not order independent, but generally the errors are small enough so that this does not matter. Or different orders of
evaluation may calculate different results, but these might all be the same for the programmer's purpose-for
example, the construction of the equivalence table in the connected components algorithm.

As we have seen, most global image computations can be formulated in this manner. Those that cannot are image
processing operations that depend on processing the image in a particular order, such as some half-toning
algorithms, the forward and backward pass in the two-pass grassfire algorithm, and certain region merging
operations.

26

5. Conclusions

In this report we ahve seen how the Apply programming language has become a focus of the parallel vision effort.
Developing Apply has yielded great benefits. It has directly benefitted the development of new parallel vision
algorithms; it has extended the longevity and portability of our code, it has yielded new insights in parallel
computing related to the implementation of important computer vision algorithms in parallel; and it has led us to a
deeper understanding of the clases of computer vision algorithms and the scientific issues encountered in
implementing them in parallel.

Section illustrates the direct benefits to the implementation of parallel vision algorithms. It is now possible to
compile Apply programs to process images with the image size specified at run time, and to do sophisticated
mirrored image border processing. The difficulties encountered in implementing such code by hand on Warp are
considerable; but the Apply programmer encounters no such difficulties - in fact, the original Apply code developed
in the second year of the parallel vision project can now be recompiled for variable size image processing without
change. This is a significant enhancement of the effective capabilities of the Warp machine.

We have also seen how Apply aided longevity and portability of out parallel vision code. Apply code has now
been mapped onto a wide range of parallel computers; the identical code can be compiled for existing and future
machines. The code developed in the second year of the parallel vision project will be used on a wide range of
projects for years to come.

Apply has also yielded new insights in parallel computing. By eliminating the local low-level vision algorithms
from consideration, it led us to focus on global operations, which are very diverse. This focus is evident in our
implementation of the Second DARPA Image Understanding Benchmark in Section.

In our implementation of the benchmark, we explored a number of programming issues: choosing which routines
to run on Warp, and which to run in parallel (when possible) on the Sun; choosing which to write in Apply, and
which had to be written in W2; and choosing how to partition the data in the W2 programs.

We now believe it is possible to confront the issue of programming mid-level vision routines in largely machine-
independent manner. We propose to extend Apply using the divide-and-conquer programming model to do this.

In Section we showed how the DARPA IU Benchmark routines can be implemented in this model, and how
flexible the model is for experimenting with different possible mappings of the routines. The theoretical basis of the
model was explored, and it was shown that a general class of global image processing operations -those that are
reversible -could be implemented with it.

The final result of our work is encouraging; we developed a new tool for parallel programming, and showed how
this tool could directly aid programming of existing computers and portability and longevity of code. We have
identified a new class of important computer vision algorithms that are amenable to implementation with an
extended version of this tool. We now embark on the further development of this tool, together with its practical use
in existing and future computer systems.

27

References

[1] Aho, A., Hopcroft, J.E. and Ullman, J.D.
The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Massachusetts, 1975.

[2] Deutch, J., Maulik, P. C., Mosur, R., Printz, H., Ribas, H., Senko, J., Tseng, P. S., Webb, J. A., and Wu, I-C.
Performan'ce of Warp on the DARPA Architecture Benchmarks.
In International Conference on Parallel Processing for Computer Vision and Display. Leeds, England,

January, 1988.

[3] Eager, D. L., Zahorjan, J., and Lazowska, E. D.
Speedup versus efficiency in parallel systems.
IEEE Transactions on Computers 38(3):408-423, 1989.

[4] Fisher, A. J. and Highnam, P. T.
Communications, scheduling, and optimization in SIMD image processing.
In Computer Architecures for Pattern Analysis and Machine Intelligence. IEEE, Seattle, Washington,

December, 1987.

[5] Kung, H.T. and Webb, J.A.
Global Operations on the CMU Warp Machine.
In Proceedings of 1985 AIAA Computers in Aerospace V Conference, pages 209-218. American Institute of

Aeronautics and Astronautics, October, 1985.

[6] Rosenfeld, A.
A Report on the DARPA Image Understanding Architectures Workshop.
In Image Understanding Workshop, pages 298-301. DARPA, Los Angeles, California, February, 1987.

[7] Schwartz, J., Sharir, M., and Siegel, A.
An efficient algorithm for finding connected components in a binary image.
Technical Report 154, New York University Department of Computer Science, February, 1985.

[8] Electrotechnical Laboratory.
SPIDER (Subroutine Package for Image Data Enhancement and Recognition).
Joint System Development Corp., Tokyo, Japan, 1983.

[9] Tucker, L. W., and Robertson, G. G.
Architecture and Applications of The Connection Machine.
Computer Magazine 21(8):26-38, August, 1988.

[10] Weems, C., Riseman, E., Hanson, A., and Rosenfeld, A.
A Computer Vision Benchmark for Parallel Processing Systems.
In Karashev, L. P and S. I. (editor), Third International Conference on Supercomputing, pages 79-94.

International Supercomputing Institute, Inc., Boston, MA, May, 1988.

28

